¹⁹F SUBSTITUENT CHEMICAL SHIFTS (SCS) OF 4-SUBSTITUTED BICYCLO[2.2.2]OCT-1-YL FLUORIDES

William Adcock* and Anil N. Abeywickrema School of Physical Sciences, The Flinders University of

South Australia, Bedford Park, S.A., 5042, AUSTRALIA.

<u>Summary</u>: The results of a linear multiple regression analysis indicate that the ¹⁹F SCS of 4-substituted bicyclo[2.2.2]oct-1-yl fluorides are essentially a manifestation of electric field and electronegativity effects.

Herein we report 19 F substituent chemical shifts (SCS) of 4-substituted bicyclo[2.2.2]oct-1-yl fluorides (1) for a large number of substituents of diverse electronic type. The results are of

interest in connection with improving our understanding of two distinct phenomena : (1) substituentinduced ¹⁹F chemical shifts which are in the <u>opposite</u> direction (reverse substituent dependence) to expectations based on the electron density parameter dominating the decisive paramagnetic contribution to ¹⁹F chemical shifts^{1,2}. A previous study³ of system 1, which was limited to only two substituents (X=F and COOEt), revealed that this model displays this unusual phenomenon; (2) the possibility of conjugative electronic transmission mechanisms in 1,4-disubstituted bicyclo[2.2.2]octyl derivatives^{4,5,6}. A molecular orbital description of this skeletal framework indicates that valence orbitals can be constructed with symmetry appropriate to the coupling of either π or σ orbitals of the substituent and probe site^{4,5,7}.

We have explored the relationship between the ^{19}F SCS of 1 listed in Table 1 and various substituent parameters ($\sigma_{\rm I}$, 1, and $\sigma_{\rm R}^{\rm O}$) which are known to characterize electric field⁸, electronegativity^{8,9}, and resonance effects (π symmetry)¹⁰ respectively. In order to avoid likely solvent discrepancies in the known $\sigma_{\rm I}$ values of substituents and, in addition, to avoid using statistically refined values¹⁰ which may not be strictly applicable to model systems where the substituent is directly attached to an sp³ hybridized carbon atom, we have employed a new $\sigma_{\rm T}$ scale for cyclohexane as solvent which were defined

Table 1

¹⁹F Substituent Chemical Shifts (SCS)^{a,b,c} of 4-Substituted Bicyclo[2.2.2]oct-1-yl Fluorides

Substituent (X)	SCS	Substituent (X)	SCS	Substituent (X)	SCS
NO ₂	-8.39	F	-8.90	NH ₂	-6.60
CN	-4.15	CL	-6.97	N(CH _z) ₂	-4.66
CFz	-5.08	Br	-5.94	NH.COCH,	-4.66
СНО	-3.09	Ι	-3.35	C ₆ H ₅	-3.37
COCH	-4.15	ОН	-8.06	CH	-3.81
соон	-4.75	OCH 3	-6.40	$Sn(CH_{3})_{3}$	3.67
соосн ₃	-4.38	OCOCH ₃	-6.08	5.0	

a. Chemical shifts (ppm) relative to parent hydrocarbon (1, X=H) as internal standard. Accurate to ± 0.01 ppm. b. A positive sign implies deshielding. c. Solvent, cyclohexane.

Table 2

Independent Variables	$\rho_{\mathbf{I}}^{\mathbf{b}}$	ρ <mark>b</mark> ρ _ι	ρ ^b _R	c ^c	r ^d	s.e. ^e	Ff	F_{I}^{f}	F_{i}^{f}	F_{R}^{f}	n ^g
σ _T	-6.81			-3.00	0.457	2.43	4.76 ^h	4.76 ^h			20
-	±3.12										
σ ₁ , σ _R ^O	-10.96		7.70	-0.77	0.750	1.86	10.96 ⁱ	17.28 ⁱ		13.78 ^j	20
	±2.64		±2.07								
σ _Ι , Δι	-3.56	-6.40		-0.72	0.880	1.33	29.29 ^k	3.98 ^l	42.79 ^k		20
-	±1.79	±0.98									
σ _τ , Δι	-6.15	-6.75		0.18	0.955	0.93	67.12 ^k	15.59 ^j	92.43 ^k		16 ⁰
-	±1.56	±0.70									
σ ₁ , Δι, σ ⁰ _R	-7.39	-6.09	1.48	0.41	0.958	0.94	44.86 ^k	13.46 ^m	38.65 ^k	0.94 ⁿ	16 ⁰
-	±2.01	±0.98	±1.52								

			9
Results	of	Correlative	Analysis"

a. General form of correlation equation: $SCS = \rho_I \sigma_I + \rho_1 \Delta 1 + \rho_R \sigma_R^0 + c. b.$ Regression coefficients for individual terms ± standard error of regression coefficient. c. Intercept. d. Multiple correlation coefficient. e. Standard error of estimate. f. F test of variance for overall correlation and individual regression coefficients. Superscripts indicate confidence level (CL) of test. g. Number of data points in correlation. h. 95.0% CL. i. 99.9% CL. j. 99.8% CL. k. 99.99% CL. ℓ . 90.0% CL. m. 99.5% CL. n. 60.0% CL. o. SCS of CN, CF₃, C ℓ , and CH₃ omitted from data set. from the appropriate 19 F SCS of 1-X-4-(p-fluorophenyl)bicyclo[2.2.2]octanes (2) 11,12 . It can be seen from the results of the correlative analysis set out in Table 2 that a combination of σ_{τ} and ι gives the best fit of all the data (n=20). This particular correlation is significant at the 99.99% confidence level with a value of r^2 equal to 0.775. Thus, the correlation accounts for about 78% of the Examination of the calculated SCS showed that a number of groups (CN, CF_3 , $C\ell$ and CH_3) variations. deviate considerably from the experimental values. It is possible that the group electronegativities of these substituents maybe inadequately defined by their respective 1 values and, hence, responsible for the deviations. Interestingly, other workers have suggested that the group electronegativity of CF_3 appears to be over-estimated by it's 1 value¹³. Whatever the reason, exclusion of these substituents gave a good correlation (r=0.955) of the SCS against a combination of σ_r and ι The correlation is again at the 99.99% confidence level but now 91% ($r^2=0.912$) of the variations are accounted for. Moreover, the intercept is small, hence, the correlation satisfactorily predicts the SCS for the parent compound (X=H, SCS=0.00). When all three parameters (σ_{I} , ι , and σ_{R}^{0}) are included in the correlation, there is no statistically significant improvement in the fit due to the addition of σ_p^0 (note that the F test of the variance actually decreases)¹⁴.

Several significant conclusions maybe drawn from the statistical analysis. First, the ¹⁹F SCS of 1 are determined predominantly by a blend of electric field and electronegativity effects. Furthermore, bearing in mind that $\Delta 1$ values are numerically larger than the corresponding σ_{I} parameters, the relative magnitude of the susceptibility parameters (Table 2, ρ values) clearly establish the latter effect as the major factor. Compelling support for the validity of the statistical dissection is provided by an independent measure of ρ_{I} (-7.56±0.40) for 1 from the ¹⁹F SCS of 1-fluoro-4-para-substituted phenylbicyclo[2.2.2]octanes (3)¹⁵. Note that this value compares favourably with that listed in Table 2 ($\rho_{I} \approx -6.15+1.56$). Second, although theoretically possible, resonance effects involving orbitals of π symmetry appear not to be transmitted through the bicyclo[2.2.2]octyl skeletal framework. Third, a corollary of the previous conclusion is that the ¹⁹F SCS of 1 are a manifestation of the σ electrons in the $2p_y$ orbital of fluorine being perturbed but not the π electrons in the $2p_x$ and $2p_z$ orbitals¹⁶. Interestingly, a similar perturbation of the local electronic environment of fluorine in meta- and para-substituted benzylfluorides also leads to large <u>reverse</u> ¹⁹F SCS¹.

The origin of the electronegativity effect upon the 19 F chemical shifts of 1 is currently being probed by 13 C nmr. These details, together with the syntheses of 1, will be presented in a main paper.

References and Notes

- 1. W. Adcock and A.N. Abeywickrema, Tetrahedron Lett., 1809 (1979) and references therein.
- 2. R.T.C. Brownlee and D.J. Craik, Tetrahedron Lett., 1681 (1980) and references therein.
- 3. G.L. Anderson and L.M. Stock, J.Am.Chem.Soc., 91, 6804 (1969).
- 4. R. Hoffmann, Acc.Chem.Res., 4, 1 (1971); R. Gleiter, Angew.Chem.Internat.Edit., 13, 696 (1974).
- 5. R.B. Davidson and C.R. Williams, J.Am.Chem.Soc., 100, 2017 (1978) and references therein.
- 6. R.D. Topsom, Prog. Phys. Org. Chem., 12, 1 (1976).
- 7. (a) ¹⁹F chemical shifts of arylfluorides are well known to be very sensitive to substituent-induced π electron perturbations^{7b}. Hence, given that the nature of the CF bond of alkylfluorides is believed to be similar (different only in degree of the contributing σ and π components)^{7c},

the fluorine nucleus seems a most appropriate probe to test for this possible phenomenon.

(b) W.J. Hehre, R.W. Taft, and R.D. Topsom, <u>Prog.Phys.Org.Chem.</u>, <u>12</u>, 159 (1976); (c) K.B. Wiberg, <u>J.Am.Chem.Soc.</u>, <u>101</u>, 2204 (1979); <u>102</u>, 1229 (1980).

- 8. W.F. Reynolds, J.Chem.Soc., Perkin 2, 985 (1980) and references therein.
- 9. N. Inamoto and S. Masuda, Tetrahedron Lett., 3287 (1977).
- 10. J. Bromilow, R.T.C. Brownlee, V.O. Lopez, and R.W. Taft, <u>J.Org.Chem</u>., <u>44</u>, 4766 (1979) and references therein.
- W. Adcock and T.C. Khor, J.Am.Chem.Soc., 100, 7799 (1978); W. Adcock and T.C. Khor, J.Org.Chem., 43, 1272 (1978); W. Adcock and G.L. Aldous, J.Organomet.Chem., (1980). In press; W. Adcock and A.N. Abeywickrema. Unpublished results.
- 12. The σ_{I} parameters derived from the 19 F SCS (c-C₆H₁₂) of 2¹¹ were scaled by setting σ_{I} for Br equal to 0.44¹⁰.
- 13. N. Inamoto, S. Masuda, K. Tori, and Y. Yoshimura, Tetrahedron Lett., 4547 (1978).
- 14. A larger value of F implies a better overall correlation or a greater significance of an individual regression coefficient.
- 15. (a) W. Adcock and T.C. Khor, <u>J.Org.Chem.</u>, <u>42</u>, 218 (1977) (b) The basis set of substituents $(NO_2, CN, C(CN)_3, COOCH_3, F, Br, OCH_3, CH_3, NH_2, and N(CH_3)_2)$ for 3 was enlarged over that previously reported ^{15a} in order to ensure a meaningful dissection of electronic effects by dual substituent parameter analysis (DSP equation)¹⁰. A good fit of the ¹⁹F SCS (c-C₆H₁₂) was achieved (SCS = $-0.97\sigma_I 0.64\sigma_R^\circ$; n=10; SD/RMS = 12%; SD = 0.06) (c) Electric field effects for several substituents (NO₂, CN, F, and Br) in 3 were estimated from $\rho_I\sigma_I$ for the DSP correlation. These values were then employed to calculate A for the Buckingham equation^{15d} (SCS = AE₂) by classical electrostatic calculations ¹¹ (A (average) = -59.4×10^{-12} esu). A correlation of calculated SCS (AE₂) for 1 (X=NO₂, CN, F, CL, Br and I) versus σ_I yields ρ_I (7.56±0.40) for this system (r=0.974, > 99.9% CL). Because the $\rho_I\sigma_I$ term from the DSP correlation for 3 also manifests field-induced π polarization of the aromatic ring, the calculated ρ_I value for 1 is undoubtedly an overestimation. (d) A.D. Buckingham, <u>Can.J.Chem.</u>, <u>38</u>, 300 (1960).
- 16. (a) It is noteworthy that CNDO/2 calculations^{16b} of some derivatives of 1 indicate that although substituents perturb the charge density of the $2p_y$ (σ) orbital, the charge density for both the $2p_x$ and $2p_z$ orbitals remains unchanged. (b) R.T.C. Brownlee and R.W. Taft, J.Am.Chem.Soc., 92, 7007 (1970).

(Received in UK 23 December 1980)